§4.3 Counterterms and Physical
Perturbation Theory
Mass renormalization:
Consider again the φ^{4} - theory $\rightarrow \lambda_{p}$ is function of S_{0} to. u_{0} set them all equal to μ^{2}

$$
\rightarrow-i \lambda_{p}=-i \lambda+3 i C \lambda^{2} \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)+O\left(\lambda^{3}\right)
$$

Inserting into amplitude
 shows that dependence on A disappears Question: But does this hold for all Feynman diagrams?
Consider corrections to the φ-propagator:

(a)

(b)

Diagram (a) gives

$$
-i \lambda \hat{\int} \frac{d^{4} q}{(2 \pi)^{4}} \frac{i}{q^{2}-m^{2}+i \varepsilon}
$$

\rightarrow depends quadratically an Λ but not on k^{2} !
Diagram (b) involves double integral

$$
\begin{aligned}
& I(k, m, \Lambda ; \lambda)=(-i \lambda)^{2} \hat{\int} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{d^{4} q}{(2 q)^{4}} \\
& \times \frac{i}{p^{2}-m^{2}+i \varepsilon} \frac{i}{q^{2}-m^{2}+i \Sigma} \frac{i}{(p+q+k)^{2}-m^{2}+i \Sigma}
\end{aligned}
$$

counting powers of p and q gives

$$
I \sim \int\left(\frac{d^{8} p}{p^{6}}\right) \sim \text { quadratic in } \Lambda
$$

By Lorentz invariance, I is function of k^{2} and we can write:

$$
\begin{aligned}
& I=D+E k^{2}+F k^{4}+\cdots \\
\rightarrow D & \sim \Lambda^{2}, E=\left.\frac{1}{2} \frac{d^{2} I(k)}{d k^{2}}\right|_{k=0} \sim \int \frac{d^{8} P}{P^{8}} \sim \log \Lambda \\
& F \sim \frac{d^{4} I(k)}{d k^{4}} \sim \int \frac{d^{8} P}{P^{10}} \rightarrow \text { convergent! }
\end{aligned}
$$

So what is all this imply?
Recall the definition of Greenfunctions:

$$
G^{(N)}\left(k_{1}, \cdots, k_{N}\right)=\left.\frac{\delta^{N} Z[J]}{\delta J\left(k_{1}\right) \cdots \delta J\left(k_{N}\right)}\right|_{j=0}(1)
$$

where $Z[7]$ is the partition function with source I coupled to φ with vacuum contribution Z_{0} removed

$$
\begin{equation*}
\rightarrow Z[J]=1+\sum_{N=1}^{\infty} \frac{1}{N!} \sum_{k_{1} \cdots k_{N}} G^{(N)}\left(k_{1}, \ldots, k_{N}\right) J\left(k_{1}\right) \cdots, \tag{N}
\end{equation*}
$$

Now define functional $W[J]$ via

$$
i W[J]=\sum_{N=1}^{\infty} \frac{1}{N!} \sum_{k_{1} \ldots k_{N}} G_{c}^{(N)}\left(k_{1}, \ldots, k_{N}\right) J\left(k_{1}\right) \ldots J\left(k_{N}\right)
$$

where $G_{c}^{(N)}$ are the connected parts of $G(N)_{S}^{\prime}$

$$
\begin{equation*}
\rightarrow z[J]=e^{i \omega[J]} \tag{4}
\end{equation*}
$$

and we have

$$
\begin{equation*}
G_{c}^{(N)}\left(K_{1}, \ldots, K_{N}\right)=\left.i \frac{\delta^{N} W[J]}{\delta J\left(K_{1}\right) \cdots \delta\left(K_{N}\right)}\right|_{J=0} \tag{s}
\end{equation*}
$$

Let us now come back to the corrections to our φ-propagator:

More generally, we can have corrections of the form

order of total graph: $n_{1}+n_{2}$
\rightarrow contributes to partition function (2) with factor $\left[\left(n_{1}+n_{2}\right)!\right]^{-1}$
but in the bulbs we have factors $\left(n_{1}!\right)^{-1}$ and $\left(n_{2}!\right)^{-1}$
\rightarrow we also have to account for the number of ways the $n_{1}+n_{2}$ vertices can be distributed among the two bulbs giving $\left[\left(n_{1}+n_{2}\right)!\right]^{-1} \cdot \frac{\left(n_{1}+n_{2}\right)!}{n_{1}!n_{2}!}=\left[n_{1}!n_{2}!\right]^{-1}$

Define now $\sum(k)$ as the sum of all graphs of $G_{c}^{(2)}(k)$ which are "one-particle irreducible", that is when cutting a line does not produce a valid new graph:

$$
\begin{aligned}
& +O\left(\lambda^{3}\right)
\end{aligned}
$$

where dotted propagators are removed

$$
\begin{align*}
\rightarrow G_{c}^{(2)}(k) & =\underbrace{G_{0}^{(2)}(k)}_{\text {propagator }}+G_{0}(k) \sum(k) G_{0}^{(2)}(k) \\
& +G_{0}^{(1)}(k) \sum(k) G_{0}^{(2)}(k) \sum(k) G_{0}^{(2)}(k)+\cdots \\
& =G_{0}^{(2)}(k)\left(1+\left(\Sigma(k) G_{0}(k)\right)+\left(\sum G_{0}\right)\left(\Sigma G_{0}\right)+\cdots\right) \\
& =G_{0}^{(2)}(k)\left[1-\Sigma(k) G_{0}(k)\right]^{-1} \\
& =\left[G_{0}^{-1}(k)-\Sigma(k)\right]^{-1} \tag{6}
\end{align*}
$$

Putting it all together, we get from our diagrams (a) and
(b): $\sum(k)=a+b k^{2}+G\left(k^{4}\right)$ with $a \sim \Lambda^{2}$ and $b \sim \log \Lambda$

$$
(G) \rightarrow \frac{1}{k^{2}-m^{2}} \longmapsto \frac{1}{(1-b) k^{2}-\left(m^{2}+a\right)}
$$

\rightarrow the pole in k^{2} is shifted to

$$
m_{p}^{2}:=m^{2}+8 m^{2}=\left(m^{2}+a\right)(1-b)^{-1}
$$

physical mass
"mass renormalization"
We also notice that the residue of the pole changed to $(1-b)^{-1}$
interpretation: the field φ is normalized such that $\mathcal{L}=\frac{1}{2}(\partial \varphi)^{2}+\cdots$ change of residue implies that quantum corrections modify z to

$$
z^{\prime}=\frac{1}{2}(1-b)^{-1}(\partial \varphi)^{2}+\cdots
$$

\rightarrow renarmalize φ to $\varphi^{\prime}=(1-b)^{-1 / 2} \varphi$ "field renormalization"

Bare versus physical perturbation theory
Putting subscripts 0 on our Lagrangian fields/couplings: $\varphi_{0}, m_{0}, \lambda_{0}$, we see that they are the "bare" field, and m_{0}, λ_{0} are bare mass and coupling const.
Bare quantities can be cutoff-dependent and divergent!
Instead use notation:

$$
\begin{aligned}
y= & \frac{1}{2}\left[(\partial \varphi)^{2}-m_{p}^{2} \varphi^{2}\right]-\frac{\lambda p}{4!} \varphi^{4}+A(\partial \varphi)^{2} \\
& +B \varphi^{2}+C \varphi^{4}
\end{aligned}
$$

\rightarrow Feynman rules:

$$
\longrightarrow \frac{k}{k^{2}-m p^{2}}
$$

A, B and C are determined iteratively: to order λ_{P}^{N} we write A_{M}, B_{N} and C_{N}
\rightarrow draw Feynman diagrams to order $\lambda_{p}^{N_{+1}}$
\rightarrow determine A_{N+1}, B_{N+1}, and $C_{N_{+1}}$ by requiring that
i) the propagator calculated to order λ_{p}^{N+1} has pole at $K^{2}=m_{p}^{2}$
ii) with residue $=1$,
iii) and that the $\varphi-\varphi$ scattering amplitude at some prescribed kinematical variables has value -i λ_{p}
$\rightarrow 3$ conditions for fixing A_{N+1}, B_{N+1} and C_{N+1} !
The only way this can go wrong is if perturbation theory produces some diagram with G (or more) external legs that is cutoff-dep.
\rightarrow there is no $D \varphi^{6}$ connterterm and we are in trouble!

Jet's see why (and when) this is avoided
Degree of divergence
Consider a diagram with E external φ lines.
Definition: A diagram is said to have a "superficial degree of divergence" D if it diverges as Λ^{D}
Theorem: $D=4-E$
check: for $E=2 \rightarrow D=2$

$$
\begin{array}{llll}
E=4 \rightarrow D=0 & \text { (logarithmic) } \\
E=6 \rightarrow D=-2 & \text { (convergent) }
\end{array}
$$

we don't have to worry!

